

NPD Systems

Building and Structures

General

The NPD plant complex was designed with Canadian climate conditions in mind. Under these conditions equipment is normally housed within a building or buildings and heating systems provided.

Powerhouse

This is the main building and houses the Reactor, Turbine-Generator unit and most of the associated equipment. The general building arrangement is shown on Fig. 1.

Because of space limitations and shielding requirements, concretes having densities greater than the normal 150 lbs/ft³ were developed. Some of the concrete used has a density of 220 lbs/ft³, while in other areas, even higher shielding values were required and concretes having a density of 300 lbs/ft³ were developed.

Since high density concretes are expensive to use and are not as strong structurally as ordinary concretes, their use was limited to those areas where the higher density was required. Some of these locations are indicated on Fig. 2.

The Powerhouse main section is divided into two parts; the "Conventional End" which contains the Turbo-Generator unit and its associated systems, and the "Reactor End" which contains the Reactor-Boiler and associated systems.

The Turbine Hall is separated from the Reactor Hall by a partial wall which serves as a ventilation barrier. A single 25 ton overhead crane services both these areas by being able to pass over the partial wall. The crane gantry is completely closed on one side, and when not in use it is parked directly above the partial wall, thus completing the ventilation barrier. See Fig. 2.

Below grade the two plant areas are separated from each other by a four foot thick concrete wall which shields the Condenser Room from radiation arising from sources within the Boiler Room. See Fig. 2.

Turbine-Generator units are generally heavy, high speed machines with small clearances between rotating and stationary parts. Because of this, foundations for these units must be strong and very rigid; not only to support the machine weight but to minimize both transverse and longitudinal deflections.

At NPD the Turbo-Generator block is constructed of reinforced concrete and extends approximately six feet below the Condenser Room floor, where it rests on and is anchored to, solid bedrock. Outlines of the block are shown on Figs. 3 and 4.

The "Reactor End" of the Powerhouse is much more complicated structurally than the "Conventional End", having areas of free access, controlled or limited access and no access at all.

The areas of no access are the Reactor Vault and Dump Pipe Rooms. The arrangement of these areas is shown on Figs. 2 and 5. The Reactor Vault walls and roof constitute the Primary Shield. The Reactor Vault south wall is ordinary concrete 7' thick. The north wall, which separates the Vault from the Boiler Room, is 220 lbs/ft³ concrete, 4.5' thick. This wall also has a labyrinth opening through which the feeder pipes pass. See Figs. 2, 5 and 6.

The roof of the Reactor Vault required special construction materials because of space limitations. The roof was built up as illustrated on Fig. 7. All cracks were then caulked with lead wool and the whole floor of the Fuelling Machine Room, which is the room directly above the vault, was sealed with fibreglass and epoxy.

The Fuelling Machines have access to the Reactor Vault by means of slots through the Reactor Vault roof. When fuelling operations are not in progress these slots are closed off by specially constructed shielding gates. See Figs. 2 and 8.

The entire Reactor Vault and Dump Pipe Room (Figs 2 & 5) has a liner of aluminum sprayed steel plate to prevent absorption of excess water from the concrete into the Vault atmosphere.

The east and west walls of the Reactor Vault hold the 4' thick Rotating End Shields. These shields provide the means of access to the Reactor faces for inspection, maintenance, etc. The rooms on the outside of these shields are known as the End Access Room (west) and Tube Withdrawal Room (east). See Fig. 5.

Since the shielding walls separating the Reactor Vault from the end rooms and Boiler Room are "Shutdown Shields" these areas are not accessible during high power operation.

The Rotating End Shields each have 17 removable plugs, one for each "Reactor circle". See Fig. 9. Roller bearings at the outer circumference and a variable speed, geared, roller drive mechanism mounted under each shield, provide for rotation either clockwise or anti-clockwise.

Shielded periscope and/or light plugs may be installed in the Rotating Shields, in place of the normal removable plugs, for viewing the Reactor face, Vault, etc. Special equipment is also available for working on or inside the Reactor from either or both end rooms. Emergency connections on the Fuelling Machines may also be reached through the Rotating End Shield holes.

Fig. 10 depicts the Rotating End Shield arrangement while Figs. 11 and 12 indicate the various End Shield settings in degrees and the proper plug to remove, for axial alignment with any given Reactor Lattice position.

The roof of the Fuelling Machine Room also forms part of the Reactor Hall floor. Because there may be radioactive sources in this room, and, because of radiation streaming from the Reactor Vault whenever the F/M Gates are open, the roof hatch is formed from slabs of 230 lbs./ft³ concrete.

The roof hatch of the Decontamination Room also forms part of the Reactor Hall floor. This, and hatch openings in the Decontamination Room floor provide equipment access to the Spent Fuel Storage area.

The Boiler Room hatch forms a large portion of the Reactor Hall floor. The main slabs of this hatch are formed with 220 lbs/ft³ concrete while the key or filler slabs are formed of 300 lbs/ft³ concrete. In order to reduce the radiation to acceptable levels in the Reactor Hall this hatch was built 3' thick. Because of the weight of these slabs they must never be stacked when they are removed from their normal positions and stored elsewhere in the Reactor Hall. Fig. 13 shows the hatch plan and storage method

Floor loading within the Powerhouse is generally limited to 300 lbs/ft². Heavy loads such as shielded shipping flasks may only be stored in a few limited areas, such as, either side of the main truck entrance doors in the Reactor Hall; over the ion exchange cavities (which are built into the top of the main wall dividing the Reactor Vault and Fuelling Machine Room from the Boiler Room. See Fig. 2); on the Spent Fuel Storage Room washdown area and, on the bottom of the Spent Fuel Storage Bay itself. Fig. 2 depicts a spent fuel shipping flask in this latter position.

Zoning, in conjunction with instruments to monitor for radioactive contamination, is used to prevent or minimize the unnecessary spread of such contaminants. Zones are established according to the probability of the existence of radioactive contamination. There are four Zones. Zone 1 having the least possibility or probability of becoming contaminated radioactively while Zone 4 has the highest probability. Figs. 14 and 15 indicate the location of Fixed Contamination Monitors at NPD.

Shielding doors are used in several locations at NPD. 'These doors are normally locked closed, prohibiting personnel access, when high radiation levels may exist in an area or room. Such doors are to be found on the Boiler Room, Fuelling Machine Room and Vault Cooling Room. Figs. 16 and 17 show shielding door arrangements.

Pumphouse

The Pumphouse is located on the bank of the Ottawa River. remote from and at a lower elevation than the Powerhouse. This arrangement was necessary because submersed suction pumps are employed to deliver the required water supplies for the Powerhouse.

The systems supplied are: Circulating Water (Main and Reject Condensers); Process Water for normal cooling; Domestic Water, mainly for human usage but also used for some cooling and as an alternate supply to the Make-up Water system; Standby Water for emergency cooling and fire fighting.

Fig. 18 is a block diagram of the Pumphouse which indicates how the intake wells are formed by the building substructure. Fig. 19 is a plan view showing the various screens arrangement for preventing debris from entering the suctions of the pumps.

More details of the Pumphouse may be found in D.M. 220. Details of the various pumps etc., may be found in D.M. 711, 712, 713, 714 and 715. Information may also be found in Training lessons dealing with these systems.

Outdoor Structures

Relief Duct

The Boiler Room at NPD is designed to withstand ≈ 5 psig internal pressure. In the event of a major rupture of the Heat Transport System during high power operation, the escaping hot water flashing into steam would create pressures greater than the building could withstand. For this reason, a Relief Duct leads from the Boiler Room to an outside pit, which is designed to divert most of the force skyward.

A diaphram is employed to seal the outer end of the Relief Duct where it enters the pit. This diaphram is released by rising pressure in the Boiler Room. A gate or door, located in the duct, is designed to drop after the initial pressure surge has passed thus resealing the Boiler Room. See Figs. 20 and 21.

Stack - Fig. 22

The Stack at NPD is constructed in the same manner and serves much the same purpose as any industrial stack. In a standard industrial plant a stack may be used to aid in the dispersal of smoke, dust, gases, vapours, etc. In a nuclear plant the stack is used to

aid in the dispersal of radioactive airborne contaminants.

The Stack at NPD is constructed of concrete and is 150 feet high. An outside metal ladder leads to a manwalk near the top.

Standard Department of Transport clearance lights give visual warning to night-flying aircraft. Burned out lamps may be changed from grade level by means of a cable elevator device.

Access to the inside of the Stack is provided near grade level by means of a steel door.

Dousing Tank

In the event of a break in a hot Heat Transport System the escaping steam could raise the pressure in the Reactor Vault and/or Boiler Room to dangerous levels. To condense this steam and thus suppress the pressure, water would be allowed to cascade into the affected area. Also, if all the D20 was rapidly removed from a hot Heat Transport System by some accident or other, light water would flow into the system to flood the fuel.

The immediate, and, automatically supplied source of water for both the above situations, would come from the Dousing Tank.

This storage tank, which is situated adjacent to the Mechanical Maintenance shop on the east side of the Powerhouse, is 32 ft. in diameter, 50 ft. high and has a capacity of 250,000 Imperial gallons.

There are five 20" mains each connected to a stand-pipe inside the tank. These standpipes determine how much water is available for Dousing (steam suppression) and which particular area the water will flow to. 100,000 gallons is the total available for Dousing, the remainder is available for Light Water Injection (flooding) via a 10" main which is not connected to a standpipe. See Fig. 23.

To prevent freezing of the water during winter months the storage tank is covered on the outside with 4" thick styrofoam insulation. The insulation is protected by corrugated aluminum sheeting on the tank wall and smooth aluminum sheeting on the top. 20 electric immersion heaters located in dry wells around the periphery of the tank at approximately two feet from the bottom, make up for heat losses.

A 3" fill pipe, 10" overflow and 8" drain are provided. See Figs. 23 and 24.

A drain hole is provided at the bottom of each 20" standpipe to ensure that these lines will drain whenever the tank is drained for inspection. If the standpipes were not drained with the tank, the weight of water contained within the standpipes would impose an unnecessary load on the tank wall.

The tank is equipped with four pressure/vacuum vents at the top through which air is admitted to the tank to prevent formation of a vacuum whenever water is draining from the tank. If the water was being used for dousing these vents would be open until the highest standpipe had emptied. The vacuum vents would then close as air, gas or steam would be admitted to the tank via the empty 20" main. The vacuum vents are designed to open at 5 oz. The pressure relief mechanisms protect the tank from overpressurization and are designed to lift at 8" H20. The pressure/vacuum vents are protected from the weather by insulated aluminum housings in which electric heaters have been placed to prevent ice formation on the vents. vents are depicted on Fig. 25.

Meteorological Tower

The Meteorological equipment was designed to provide information which, (1) could be used in the event of an unplanned release of radioactivity, or (2) could be used to plan activity releases.

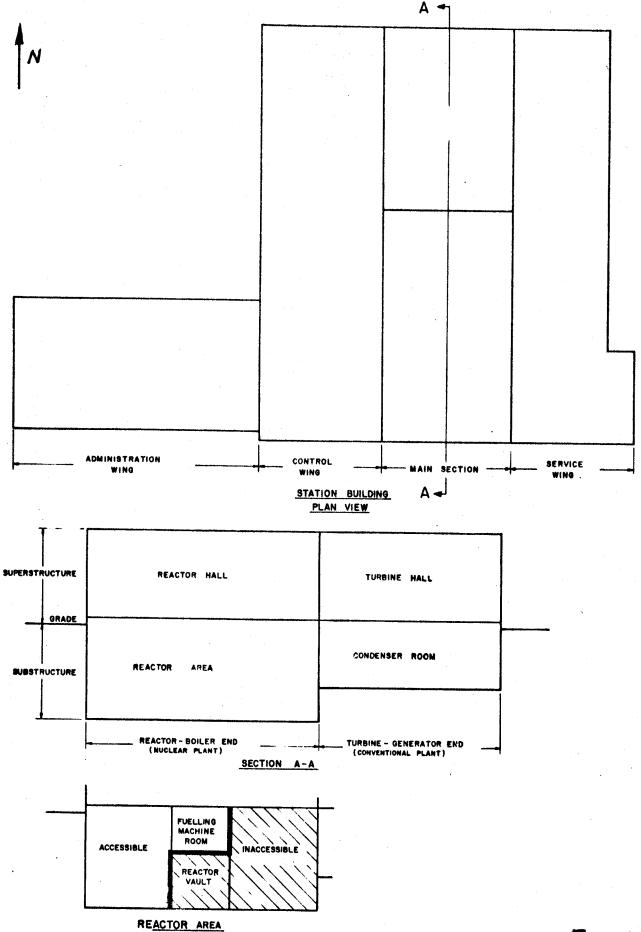
The elevation of the tower (140') and the location of instruments was based on Stack height.

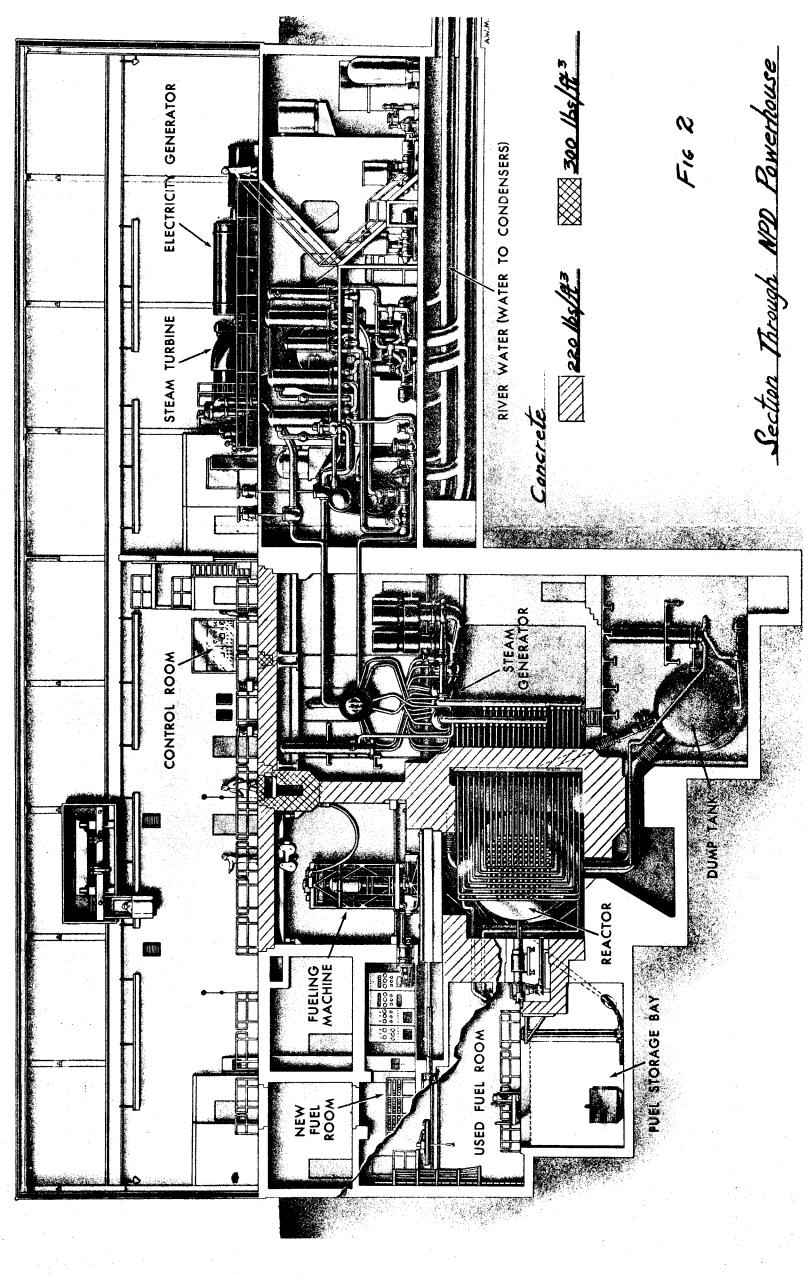
Wind speed and wind direction instruments are mounted at the 140' elevation. Air temperature difference detectors are mounted at the 140' and 20' elevation.

The "Met Tower" is a steel structure built up of pipe sections set in a triangle and fastened to each other with welded cross straps at 15" intervals.

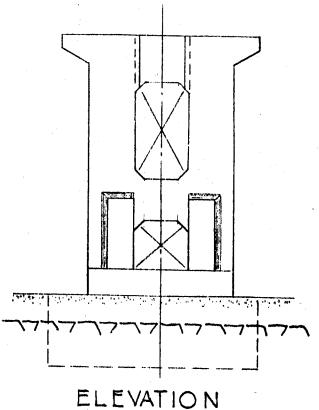
One of the three sides or faces of the tower serves as a ladder. A safety belt guide has been attached to this face and the cross ties serve as ladder rungs.

The tower is set in a concrete base and held erect by three sets of guy wires. See Fig. 26.

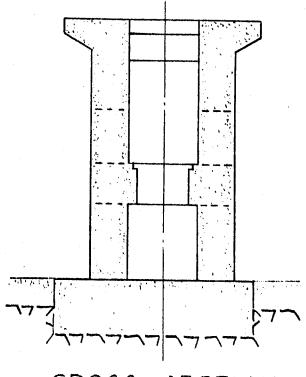

Additional information on the Meterological system is contained in Design Manual 611.

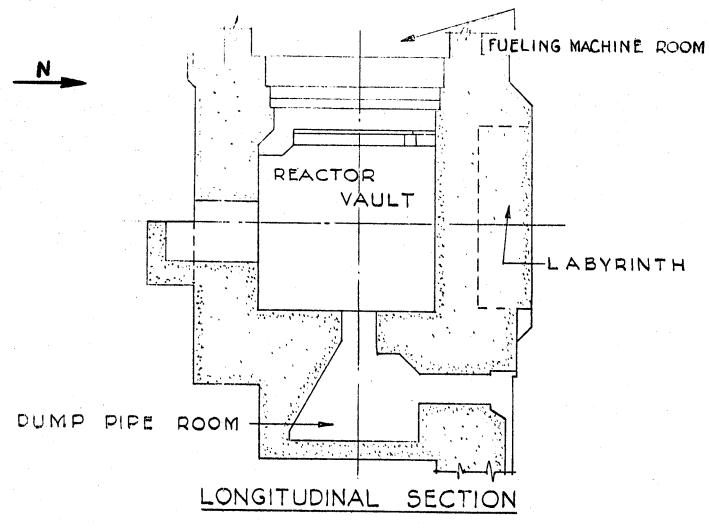

For the person requiring additional or more specific information on Buildings and Structures the 200 series Design Manuals are available.

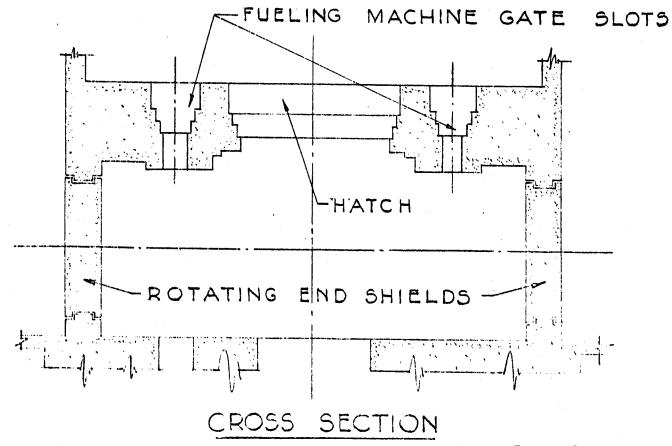
A list of Powerhouse room numbers and names is included as Appendix A.


Appendix B is a list of room arrangement drawing numbers.

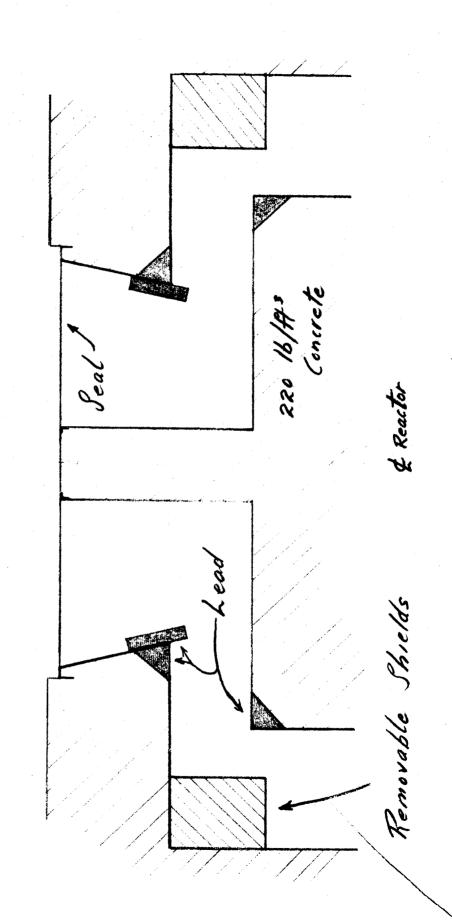
R. Whitney



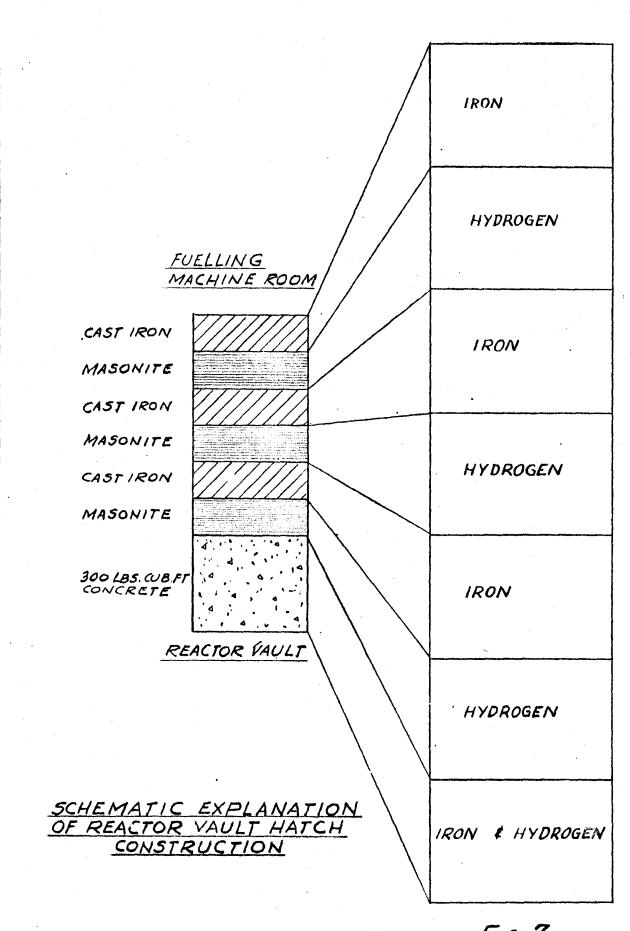

TSTEAM SEPARATOR SUPPORTS PLAN CONDENSER STEAM END . -GENERATOR END FOUNDATION LONGITUDINAL SECTION F16 3



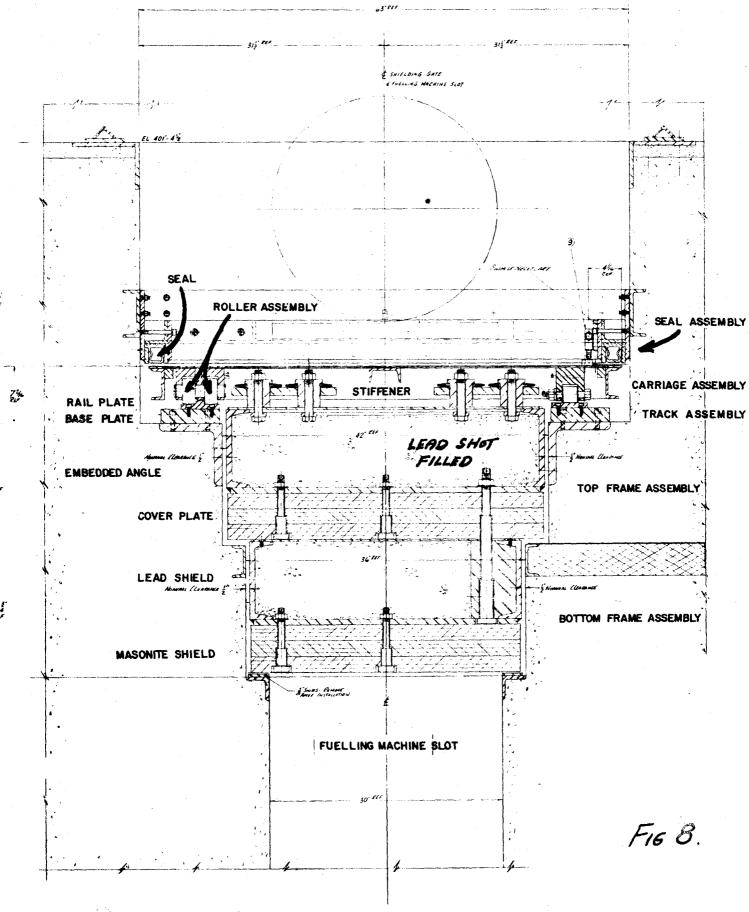
ELEVATION (STEAM END)



CROSS SECTION (GENERATOR END)


F16. 5

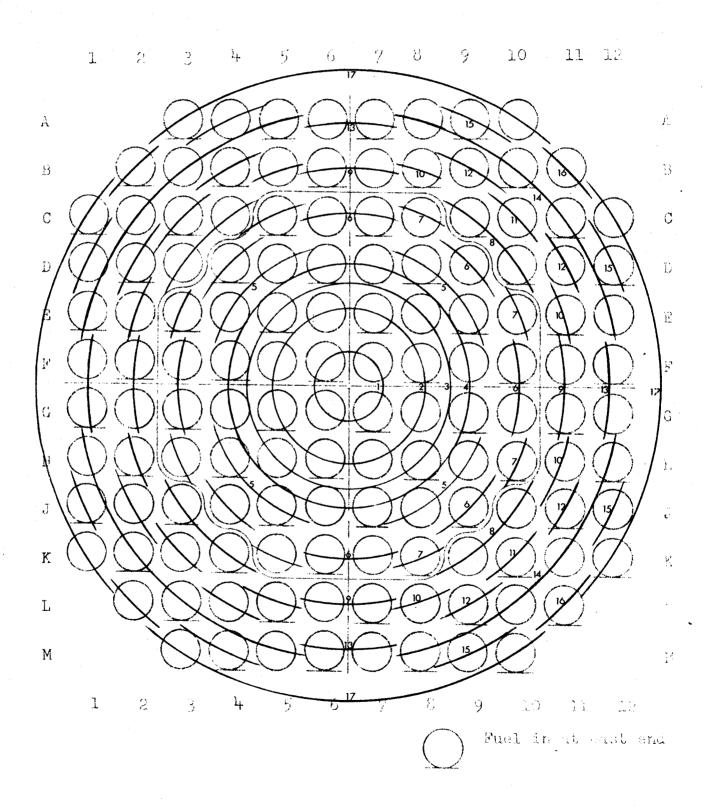
Z

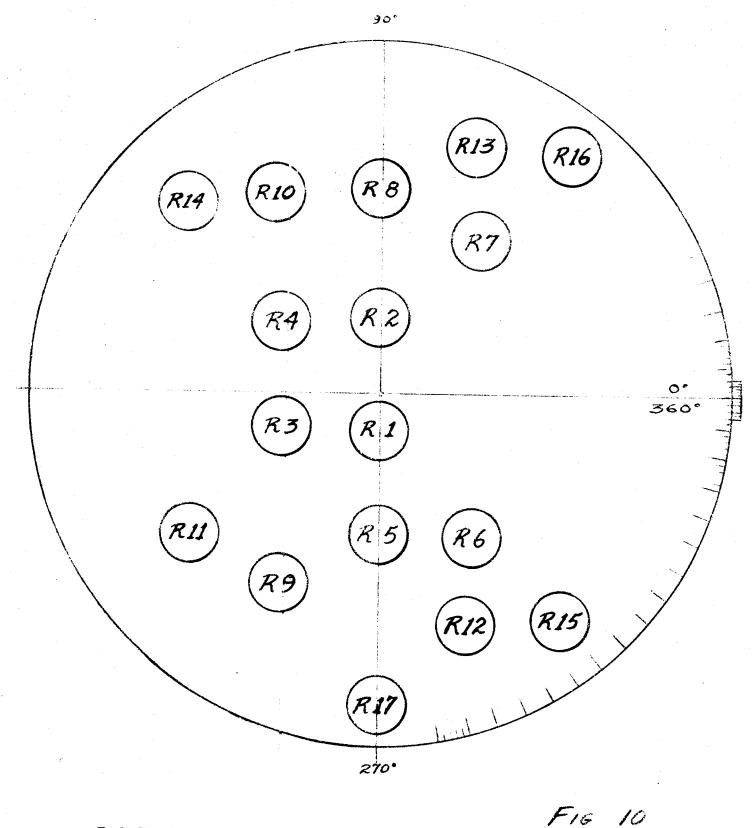

Labyrinth Arrangement

Plan

F16.7

FUELLING MACHINE GATE ARREI




⁽¹⁾ WEST SLOT - OPPOSITE HAND

⁽²⁾ EAST SLOT - AS SHOWN

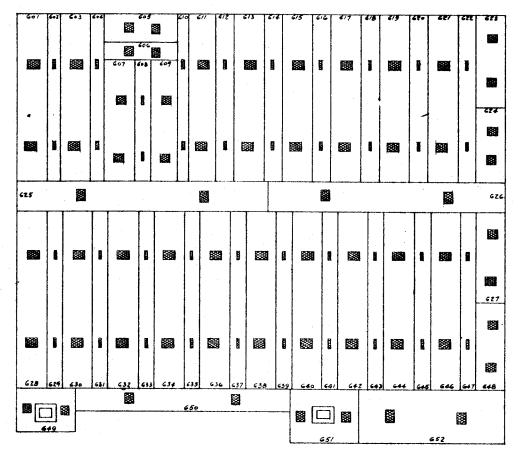
REACTOR CIRCLES SUPERIMPOSED ON

NPD G.O. LATTICE CODE LOOKING WEST

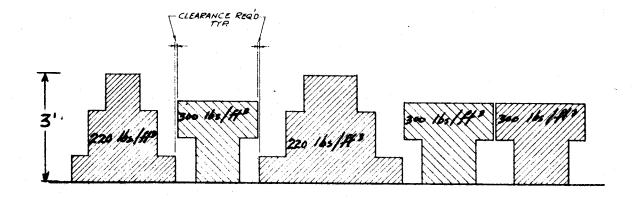
End Shield Plugs

The large end plugs are fitted with smaller stepped plugs.

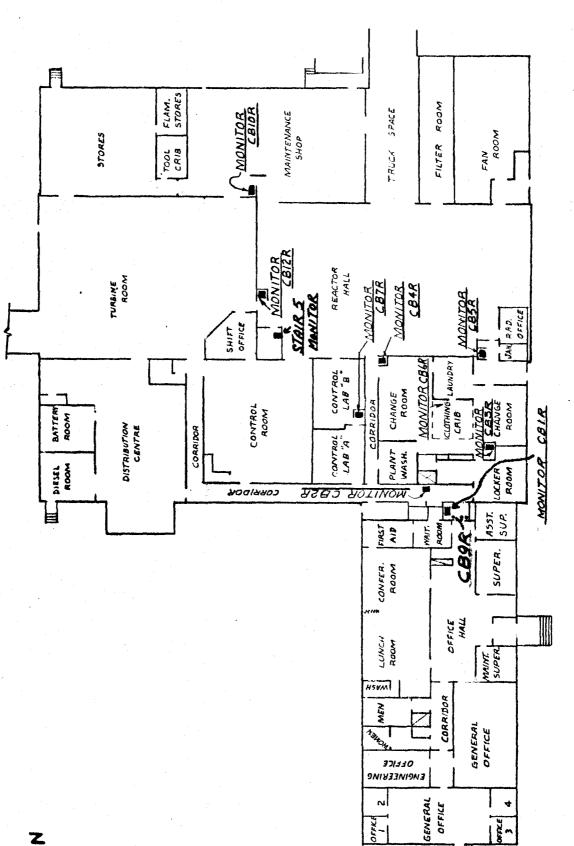
	12	11	10	9	8	7	6	5	4	3	2	1	
A			RI7	R15 197	R14 29 1	R13 333½	R13 344	R14 594	R15 246	R17 212½			A
B		R16 276	R14 67	R12 173∄	R10 6½	R9 147₺	R9 160	R10 43호	R12 232	R14 82½	R16		В
С	R17 122½	RI4 352½	R11 81	R8 324 2	R7 305 1	R6 206‡	R6 222½	R7 351½	R8 35 2	R11 171	R14 96‡	R17 2372	С
D	R15 156	R12 142	R8 305호	R6 169½	R5 149	R4 40 ‡	R4 63	R5 211	R6 259½	R8 54₺	R12 263₹	R15 287	D
E	R14 329₹	R10 313 ½	R7 261½	R5 121	R3 64 2	R2 341½	R2 18½	R3 154½	R5 239	R7 35‡	R10 96½	R14 119 ‡	E
F	R13 254	R9 70‡	R6 132½	R4 333	R2 288 2	R1 135	R1 225	R2 71½	R4 130‡	R5 296½	R9 237₺	R13 63½	F
G	R13 243½	R9 57½	R6 116 1	R4 310 1	R2 251½	R1 45	R1 315	R2 108½	R4 153	R6 312½	R9 250‡	R13	G
H	RI4 299 1	R10 276 1	R7 215‡	R5 59	R3 334 2	R2 198≩	R2 161	R3 244 }	R5 301	R7 81½	R10 133불	R14 149 3	Н
J	R15 107	R12 83₹	R8 234½	R6 79½	R5 31	R4 243	R4 220‡	R5 329	R6 349₺	R8 125½	R12 322	R15 336	J
K	R17	R14 276 4	R11 351	R8 215½	R7 171½	R6 42½	R6 26‡	R7 125‡	R8 144½	R11 261	R14 172½	R17 302½	K
L		R16 186	R14 262 2	R12 52	RLO 233½	R9 340 ‡	R9 327 2	R10 186 ½	R12 353₹	R14 186 2	R16 96		L
M			R17 32½	R15 66	R14 239章	R13 164	R13 1532	R14 209‡	R15 17	Rl7 327₺			М
	12	11	10	9	8	7	6	5	4	3	2	1)


SETTING ANGLES FOR $\underline{\mbox{END}}$ ACCESS ROOM ROTATING SHIELD LOOKING EAST.

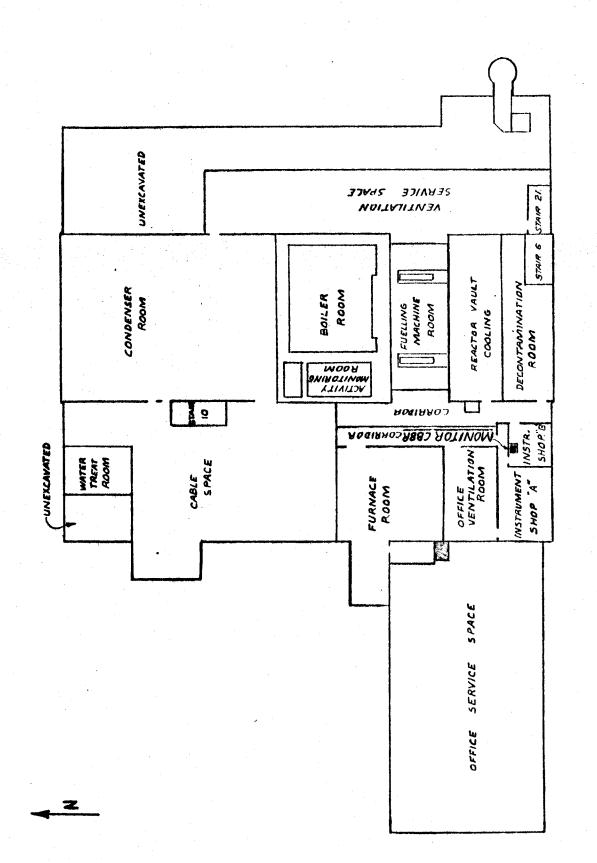
	1	2	2)	r .	6	7	8	9	10	11	12	
	- 		3	4	5					10		12	
A			R17 1472	R15 197	R14 29‡	R13	R13	R14 594	R15 246	R17 212½		· · · · · · · · · · · · · · · · · · ·	A
В		R16 276	R14 6 2	R12 1733	R10 6½	R9 147₺	R9 160	R10 43호	R12 232	R14 82½	R16		В
C	R17 1222	R14 352½	R11 81	R8 324½	R7 305‡	R6 206 1	R6 222½	R7 351½	R8 35½	R11 171	R14 96 1	R17 2372	C
D	R15 156		R8 305½	R6 169½	R5 149	R4 40‡	R4 63	R5 211	R6 259	R8 54€	R12 263‡	R15 287	D
E	R14 329‡	R10 313½	R7 261½	R5 121	R3 64½	R2 341½	R2 18½	R3 1542	R5 239	R 7 35 ‡	R10 96 ½	R14 1194	E
F	R13 254	R9 70‡	R6 132€	R4 3 3 3	R2 288½	Rl 135	R1 225	R2 7I½	R4 130 ‡	R6 296 2	R9 237₹	R13 63½	F
G	R13 2432	R9 57₺	R6 116‡	R4 310‡	R2 251½	R1 45	R1 315	R2 108½	R4 153	R6 312½	R9 250‡	R13 74	G
н	R14 299‡	R10 276½	R7 215‡	R5 59	R3 334½	R2 198½	R2 161½	R3 244½	R5 30 1	R7 81½	R10 133₺	R14 149‡	Н
J	R15 107	R12 833	R8 234½	R6 79⅓	R5 31	R4 243	R4 220‡	R5 329	R6 349₹	R8 125	R12 322	R15 336	J
K	R17 572	R14 276≹	R11 351	R8 215	R7 171₺	R6 42½	R6 26 ‡	R7 125 ‡	R8 144₺	R11 261	R14 172½	R17 302½	K
L		R16 186	R14 262½	R12 52	R10 223½	R9 340‡	R9 327€	R10 186½	R12 353‡	R14 186 2	R16 96		L
M			R17 32½	R15 66	R14 2394	R13 164	R13 153½	R14 209‡	R15 17	R17 3272			М
	1	2	3	4	5	6	7	8	9	10	11	12	•


SETTING ANGLES FOR TUBE WITHDRAWAL ROOM ROTATING SHIELD LOOKING WEST.

Boiler Room Hatches Fie 13

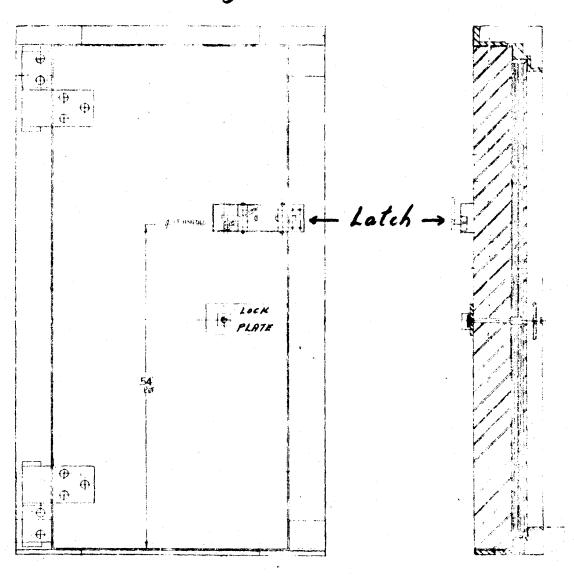


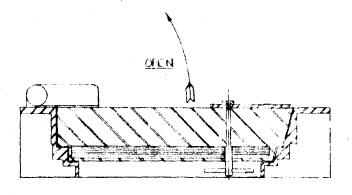
PLAN OF HATCH H-G

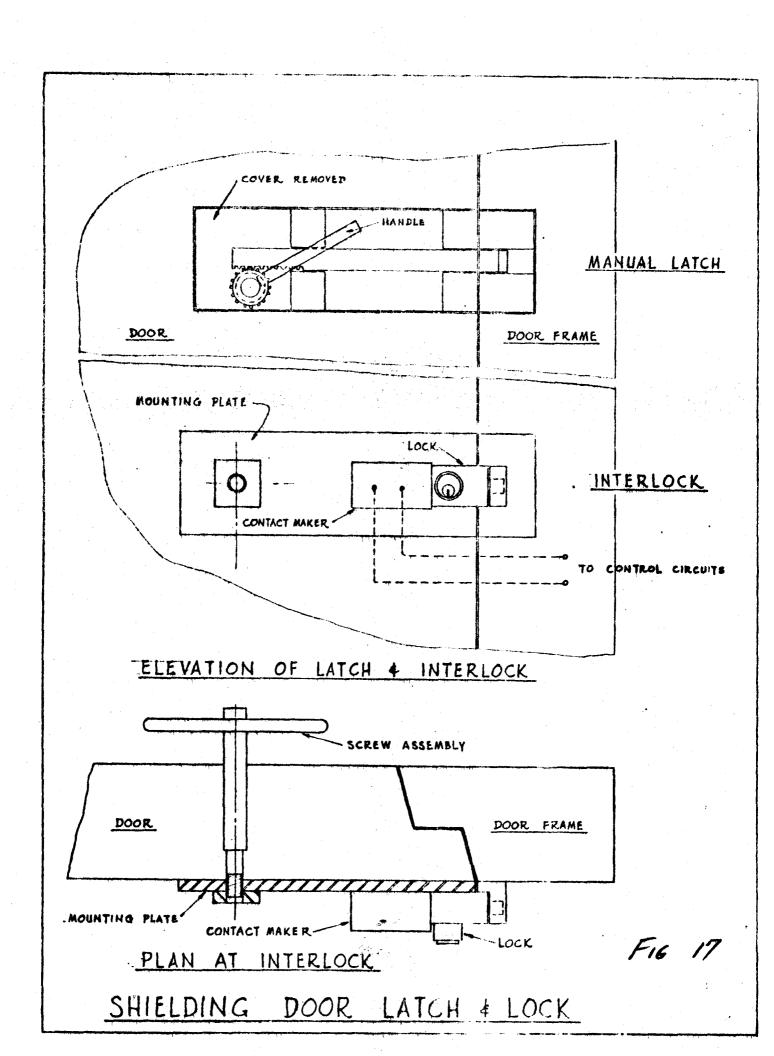


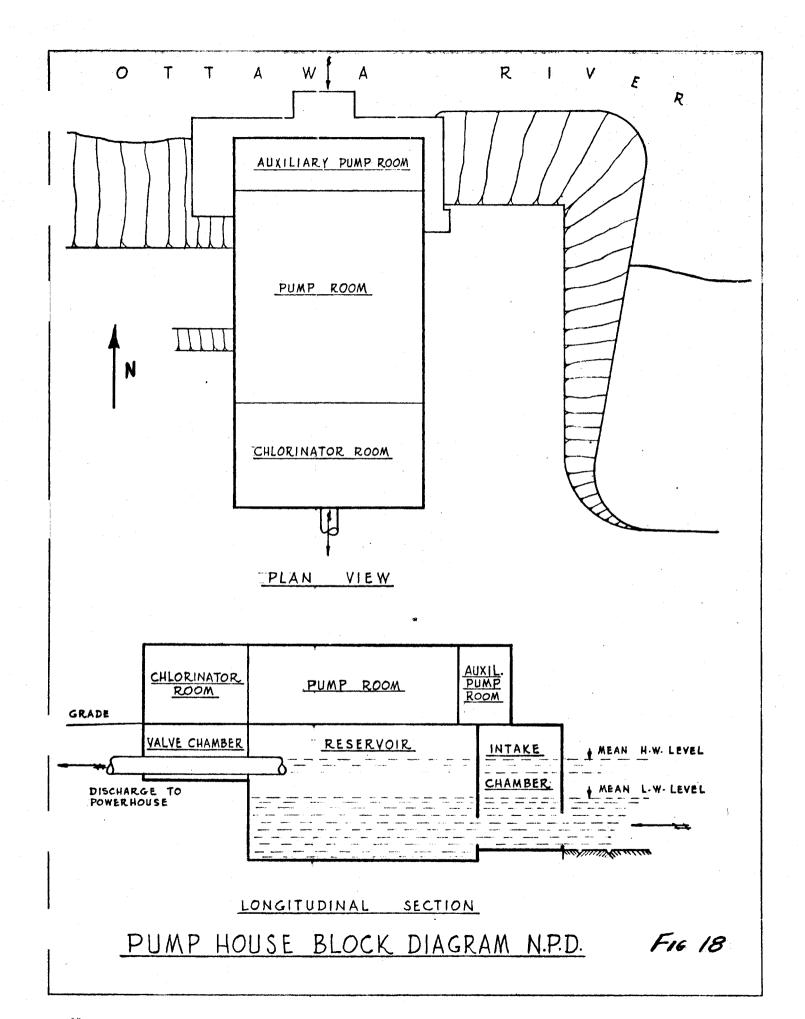
NOTE:

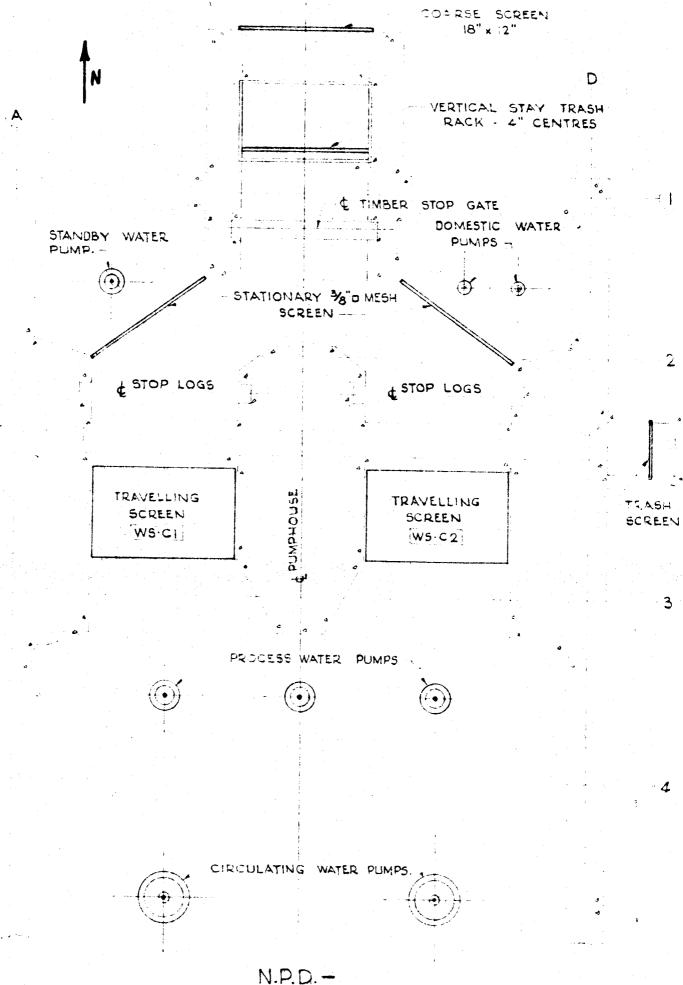
AFTER REMOVAL, HATCH SECTIONS TO BE LAID ON FLOOR IN SINGLE LAYER.
ON NO OCCASION SHALL THE HATCH SECTIONS BE STACKED ON TOP OF EACH OTHER

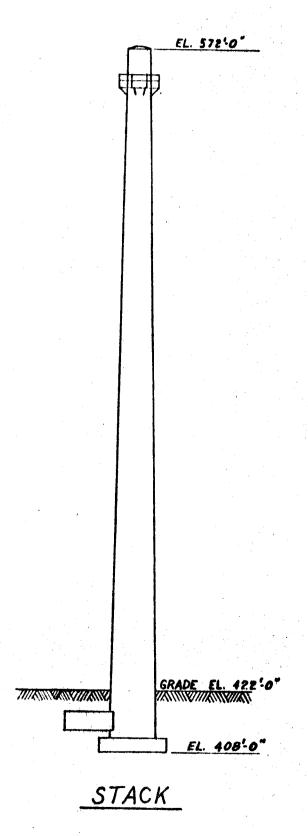



ELEVATION 425'-0" AT FIXED MONITORS OF LOCATION



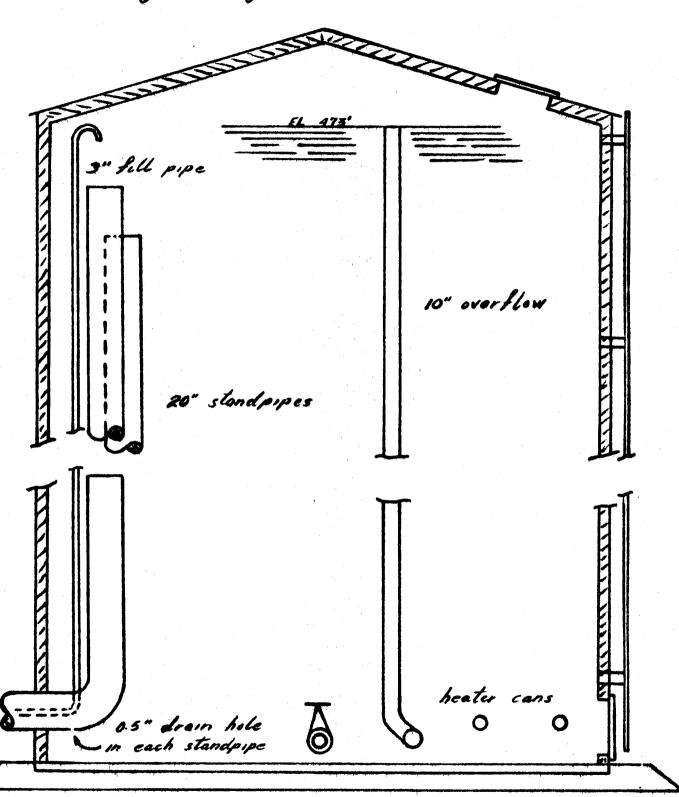

LOCATION OF FIXED MONITORS AT ELEVATION 406-3"

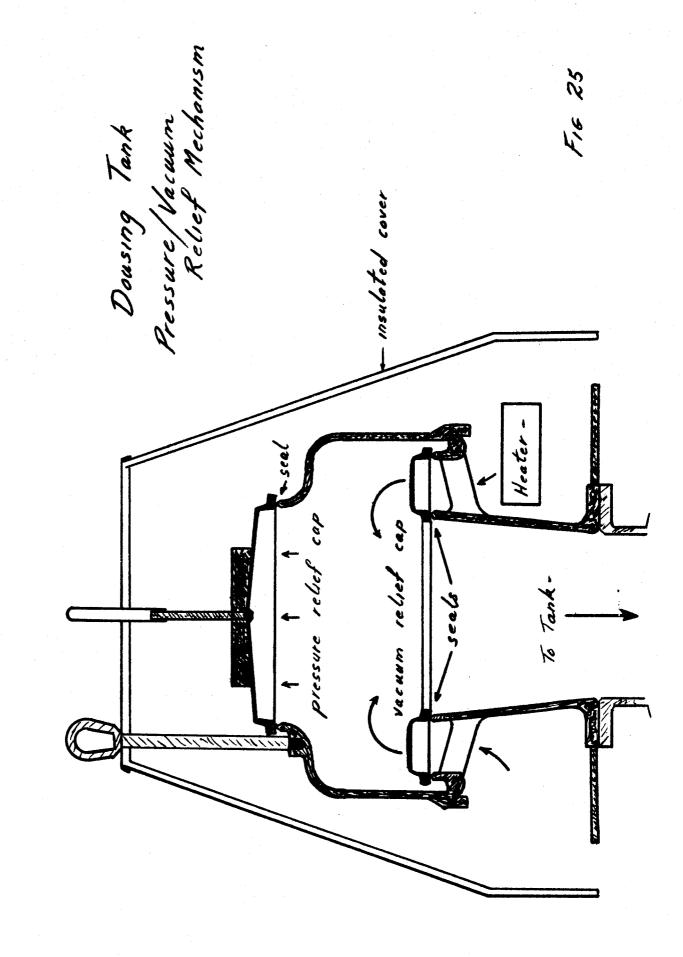

Typical Shielding Door

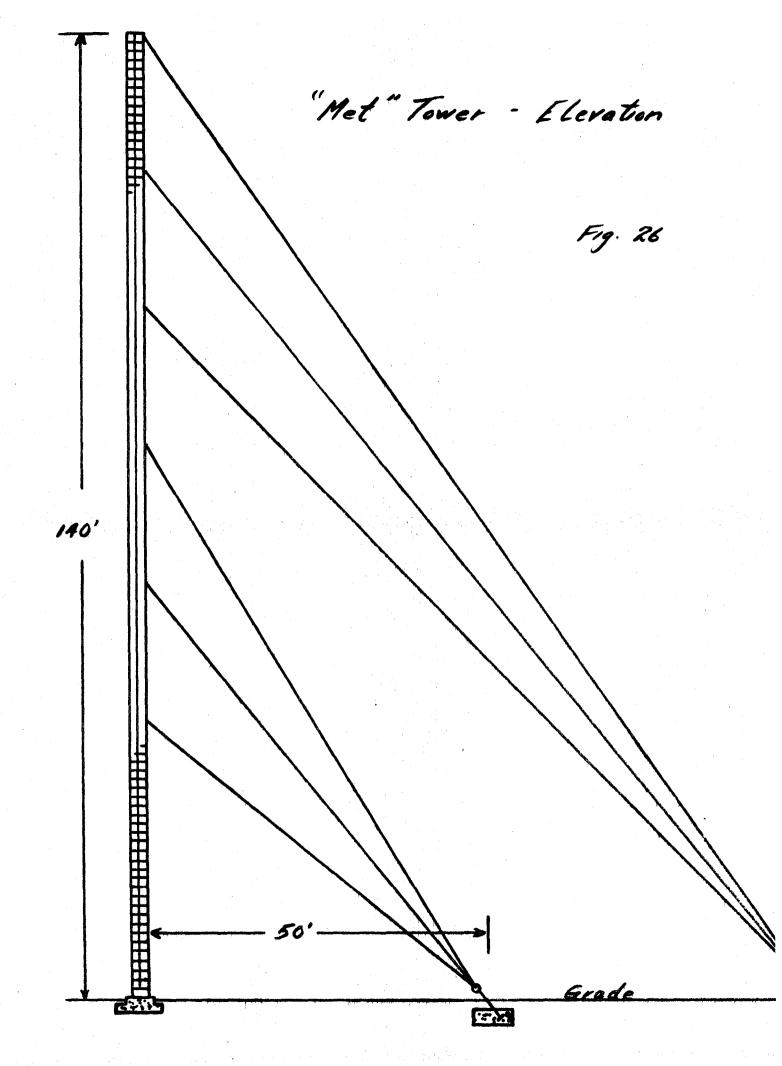


N.P.D. INTAKE WATER SCREEN ARRANGEMENT
PLAN

F16 19




F16 22


Dousing Storage Tank - Plan 32' 10" IJW Pipe 10" Over flow 8" Drain

Dousing Storage Tank - Elevation

F16 24

BUILDINGS, STRUCTURES, AND SHIELDING, -

POWERHOUSE - GENERAL

APPENDIX A

ROOM LIST

Room No.	Room Name		
101	Wells Area Sump		
102			
103	Boiler Ran. Heavy water Collection area Dump Tank Room		
104	Dump Pipe Room		
201	Boiler Room		
202	End Access Room		
203	Reactor Vault		
204	Tube Withdrawal Room		
205	Spent Fuel Storage Bay		
206	Bay Area Sump		
207	Bay Clean-up Room		
30 i	Service Pipe Trench		
302	Service Pipe Trench Sump		
303	Condenser Room Pipe Trench		
304	Pressure Relief Duct		
306	Spent Fuel Storage Room		
307	Active Auxiliaries Room		
401	Flow Monitoring Room		
402	Water Treatment Room		
403	Condenser Room		0
404	Escape Corridor — Upper	Boiler	MM.
405	ruelling Machine Hoom		
406	New Fuel Room West		
407	Corridor		
408	New Fuel Room East		
50 1	Instrument Shop "A"		
502	Instrument Shop "B"		
503	Office Ventilation Room		
504	Furnace Room		
505	Corrido r		
506	Corridor		
507 508	Air Conditioning Room		
500 601	Relay Room		
601 602	Office Service Space		
603	Cable Space		
604	Activity Monitoring Room Reactor Vault Cooling Room	1	
605	Decontamination Room	1	
606	Corridor		
607	Ventilation Service Space)	
701	Assistant Superintendent	/	
702	Superintendent	/	
703	Receptionist - Secretary	•	
704	Vestibule		
703	Maintenance Supervisor		
706	General Office		
707	Engineering Office Women's Rest Room		
708	Women's Rest Room		
709	Women's Washroom		
71Ó	Janitor's closet.		
711	Corridor		
. 712	Men's Office Washroom Lobby		
713	Men's Office Washroom		
714	Lunch Room Washroom Lobby		
715	Lunch Room Washroom	,	
,/			

D	W-
MOOR	- BO &

Room Name

716 717 718 719 720 721 722 723 724 725 726	
77777777777777777777777777777777777777	
7390 7443 7443 7448 7489	
750 751 752	

Admin Wing

Lunch Room Conference Room First Aid Room First Aid Closet Waiting Room Coat Closet Office Hall Airlock Lobby Locker Room Washroom
Zone i Change Room
Clothing Crib
Laundry Room
Zone 2 Change Room
Plant Washroom Corridor Control Laboratory A Control Laboratory B Control Panel Space Control Room Corridor Distribution Center Diesel Room Battery Room Turbine Hall Shift Office Reactor Hall Janitor's Closet Radiation Office Fan Room Filter Room Truck Space Maintenance Shop Tool Crib Flammable Stores Stores Corridor

Service Wing

BUILDINGS, STRUCTURES, AND SHIELDING, -

POWERHOUSE - GENERAL

APPENDIX B

LIST OF ROOM ARRANGEMENT DRAWINGS FOR THE NUCLEAR AREA

	CGE Number	USI Number
Boiler Room Arrangement	201E3lili	300.C.1
Dump Tank Room Arrangement	201E/196	320.0.5
Active Auxiliaries Room Arrangements	201E345	340.C.5
Demineralizer Cavities Arrangement	201E579	322.0.1
Activity Monitoring Room Arrangement	201E534	331.0.8
Heavy Water Collection Area Arrangement	5510709	335.C.5
Bay Clean-Up Room Arrangement	201E256	356.C.1
Reactor Area General Arrangement	201E314	310.C.1
Spent Fuel Room Arrangement	201E317	353.C.1
New Fuel Room Arrangement	201E377	351.0.6
Fuelling Machine Room Arrangement	201E270	352.C.7
Corridor 505 and 506	201E516	
Ventilation Service Space (Ventilation)	201 <u>E</u> 358	730.C.4
Ventilation Service Spacing	201E545	713.C.4
Service Pipe Trench	201E303	713.c.5
Service Pipe Trench	201 E309	713.C.6
Active Auxiliaries Room	201E397	2115.C.3
Water Treatment Room	491D360	716.C.1
Reactor Vault Cooling Room	201E316	734.0.2
Decontamination Room	201 E285	781.CN.2
Fan and Filter Room	201E357	730.0.5
Maintenance Shop	491D353	770.c.1
Change Rooms	491D345	210.CM.12
Control Lab. A & B	5510296	782.0
'Shift Office	5510285	63
Janitor Closet and Radiation Office	5510292	210.CN.14
Fan Room	L91D661	713.C.8
Wells Area Sump	591D506	

NPD G.S. - Systems Building and Structures Questions

- (1) What is the purpose of the Stack at NPD?
- (2) What is the purpose of the Relief Duct?
- (3) Why is the Pumphouse separate from and at a lower elevation than the Powerhouse?
- (4) What is the purpose of the Meteorological Tower?
- (5) What is the purpose of the Dousing Tank?
- (6) What is the purpose of "zoning"?
- (7) Why are some walls, hatch covers, etc., constructed from high density concrete and/or made thicker than would be required for purely structural reasons?
- (8) Why are massive foundations used for the Turbo-Generator unit?
- (9) Why is the Reactor Vault lined with steel plate?
- (10) What function(s) do the Rotating End Shields serve?